Analytic Approximation of Matrix Functions and Dual Extremal Functions
نویسندگان
چکیده
We study the question of the existence of a dual extremal function for a bounded matrix function on the unit circle in connection with the problem of approximation by analytic matrix functions. We characterize the class of matrix functions, for which a dual extremal function exists in terms of the existence of a maximizing vector of the corresponding Hankel operator and in terms of certain special factorizations that involve thematic matrix functions.
منابع مشابه
Fuzzy Best Simultaneous Approximation of a Finite Numbers of Functions
Fuzzy best simultaneous approximation of a finite number of functions is considered. For this purpose, a fuzzy norm on $Cleft (X, Y right )$ and its fuzzy dual space and also the set of subgradients of a fuzzy norm are introduced. Necessary case of a proved theorem about characterization of simultaneous approximation will be extended to the fuzzy case.
متن کاملContinuous Discrete Variable Optimization of Structures Using Approximation Methods
Optimum design of structures is achieved while the design variables are continuous and discrete. To reduce the computational work involved in the optimization process, all the functions that are expensive to evaluate, are approximated. To approximate these functions, a semi quadratic function is employed. Only the diagonal terms of the Hessian matrix are used and these elements are estimated fr...
متن کاملCOVARIANCE MATRIX OF MULTIVARIATE REWARD PROCESSES WITH NONLINEAR REWARD FUNCTIONS
Multivariate reward processes with reward functions of constant rates, defined on a semi-Markov process, first were studied by Masuda and Sumita, 1991. Reward processes with nonlinear reward functions were introduced in Soltani, 1996. In this work we study a multivariate process , , where are reward processes with nonlinear reward functions respectively. The Laplace transform of the covar...
متن کاملQuartic and pantic B-spline operational matrix of fractional integration
In this work, we proposed an effective method based on cubic and pantic B-spline scaling functions to solve partial differential equations of fractional order. Our method is based on dual functions of B-spline scaling functions. We derived the operational matrix of fractional integration of cubic and pantic B-spline scaling functions and used them to transform the mentioned equations to a syste...
متن کاملOn the Fast Growth of Analytic Functions by Means of Lagrange Polynomial Approximation and Interpolation
The present paper is concerned with the fast growth of analytic functions in the sets of the form {z C : φK(z) < R} (where φK(z) is the Siciak extremal function of a compact set K) by means of the Lagrange polynomial approximation and interpolation on K having rapidly increasing maximum modulus. To study the precise rates of growth of such functions the concept of index has been used.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007